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Equipe GALEN, INRIA Saclay, Ile-de-France

Grande Voie des Vignes, 92 295 Chatenay-Malabry, France
www.mas.ecp.fr

ABSTRACT

We propose a method for the non-rigid tracking of small animals
in video sequences. Based on an image sequence showing the an-
imal, first a sub-set of images with coherent pose is chosen auto-
matically. Then a robust rigid registration determines the coarse
animal body pose in the set of frames and a subsequent non-rigid
group-wise registration using the minimum description length prin-
ciple learns a deformation model of the animal. It obtains a non-rigid
mapping between the individual positions and shapes of the animal
during the sequence, based on discrete sets of landmark candidates
and according texture features. This is of high relevance in small an-
imal research to integrate signals from multiple frames, and cannot
be achieved by standard continuous registration methods. We report
first experimental results on video sequences of a rat.

Index Terms— Nuclear imaging, SIFT, RANSAC, Non-Rigid
Registration, Group-Wise Registration, MDL, Active Appearance
Models

1. INTRODUCTION

Non-rigid registration is an active area of research. In medical imag-
ing most registration approaches address the continuous mapping
between data showing anatomical structures. In these cases the de-
formation is usually constraint by anatomy, and the assumption of
continuous deformation fields is valid. Examples for group-wise
registration methods are [1] where a one-to-many non-rigid contin-
uous registration is proposed, or [2] where the statistical properties
of dense deformation fields are used to perform the registration of
multiple examples.

In small animal research the monitoring and the integration of
signals stemming from multiple frames to improve signal quality [3],
is an important and open problem. In particular the tracking of an-
imals over long periods of time is difficult. Continuous registration
techniques can not be applied on such video sequences, since the
moving animal causes discontinuous displacements, partially miss-
ing data due to occlusions, and exhibits a shape and pose variation
that is beyond the range of typical anatomical structures.

We present a non-rigid registration approach, that establishes
a mapping between the body of an animal at different time points.
The registration is based on a robust estimation of the animal pose
by means of interest points, and local texture descriptors. The non-
rigid registration of the deforming animal body is formulated as a
model building problem. It is addressed by a minimum description
length principle based criterion, that accounts for the systematic de-
formation - as opposed to purely elastic - of animals at different time

This work has been partially supported from the Region Île-de-France.

Fig. 1. Frames of a typical sequence showing a rat.

points. Direct applications of the method are behavioral studies of
small animals, or the fusion of image information, e.g. nuclear imag-
ing data, where the signal to noise ratio makes an integration over a
long time period necessary.

The remainder of the paper is structured as follows: in Sec. 2 we
outline the method, while the two main parts of the approach, robust
pose estimation, and group-wise non-rigid registration are explained
in detail in Sec. 3 and Sec, 4, respectively. In Sec. 5 experimental
results are reported, and a final discussion is given in Sec. 6.

2. METHODOLOGY

A small animal is monitored with a static camera. It acquires frames
at fixed time intervals that are used for the registration. In Fig. 1
frames of a sequence of a rat are shown. The automatic registration
method is roughly divided into three steps:

A coarse registration of the animal body is performed. The rigid
registration is based on feature points extracted on the animal body
and according local image descriptors. Homographies between the
frames are calculated by a RANSAC [4] procedure. Then, frames in
which the animal exhibits a coherent pose are detected in the image
sequence. This is necessary to avoid frames that cannot be regis-
tered e.g. a rat standing vertically during a short time period of the
sequence filmed from atop a cage.

In the last step the non-rigid deformation of the animal body
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Fig. 2. Schematic overview of the algorithm.

is modeled automatically in the chosen sub-sequence. A mini-
mum description length based optimization learns a model of shape
variation, while at the same time establishing a non-rigid mapping
between the different instances of the animal body. In Fig. 2 a
schematic overview of the algorithm is depicted.

3. RIGID REGISTRATION AND COHERENT
SUB-SEQUENCES

As a first step background subtraction is performed on the image se-
quence. Since in a controlled illumination situation the background
(e.g. the floor of the cage) remains constant, while the animal moves,
it can be modeled by the median value (or minimum in the case of
black floors) of each pixel. However, other background modeling
frame works like adaptive background models can by applied, if the
algorithm has to account for changing illumination. After the back-
ground modeling each pixel can be classified into background or
foreground, and the remaining calculation is restricted to foreground
regions.

On the foreground regions SIFT features [5] are extracted for all
frames, and a homography between the subsequent frames is esti-
mated in a robust fashion using RANSAC. Please refer to [6] for a
detailed discussion of homography estimation. SIFT features deter-
mine interest points and according descriptors that can be detected
repeatably. The local texture description is based on gradient his-
tograms. They have proven reliable since they are scale and rotation
invariant, the latter being of particular importance in a small animal
tracking scenario. No artificial external markers like e.g. infrared
markers are required.

To robustly register the animal body in two frames, a pair-wise
matching of the interest points based on the SIFT features in two
frames Ii and Ij is performed. This results in pairs (xi,k, xj,k) of
corresponding points in the two images. From this set of correspon-
dences sub-sets of 4 points are chosen randomly, and a homography
Hij between images Ii and Ij is estimated. The remaining points
xi,l in image Ii are transformed to positions x′j,l in Ij according to
Hij , and the registration error to the pair-wise match x′j,l − xj,l is
calculated. The number of inliers, with a registration error below
a certain tolerance threshold, determines a notion of reliability of
the homography. RANSAC chooses the homography H∗

ij with the
highest number of inliers. The resulting estimates are robust against
a certain amount of ambiguous matches caused by change of rat pos-
ture.

Fig. 3. Initial correspondences after rigid-registration.

We calculate homographies between subsequent images Ii and
Ii+1 with i = 1, . . . , n − 1. This results in a sequence of homo-
graphies from H1,2 . . . Hi,i+1 . . . Hn−1n. The homography, H1,k,
from the reference image, I1, to the image, Ik, is the concatenation
of the consecutive homographies from H12, H23 ...until Hk−1k. As
two neighboring images are generally quite similar, in most cases
the consecutive homographies Hii+1 constructed are stable.

Since the sequence is expected to contain frames, that cannot
be registered without considerable distortions, we choose a sub-
sequence with coherent animal behavior. The selection procedure
is based on the number of inliers during homography estimation. A
good strategy was to choose sub-sequences, where the number of
inliers in pairwise homographies is above a certain threshold.

4. GROUP-WISE NON RIGID REGISTRATION

After a coarse robust rigid registration of the animal body a fine non-
rigid registration is performed. Correspondences are initialized by
the homographies Hi,j between individual frames. Then the non-
rigid group-wise registration is performed based on a method pro-
posed in [7].

4.1. Choice of features and interest points

Both the rigid and no-rigid registration are based on finite sets of in-
terest points, and corresponding local texture features. We compared
the suitability of two different interest point detectors. For both gra-
dient histograms were calculated to describe the local texture.

1. Difference of Gaussian (DoG) and gradient histograms:
the standard SIFT [5] approach can be employed to find point corre-
spondences. This method gives best results for the robust homogra-
phy estimation between images, since SIFT features are stable, and
invariant against rotation and scale changes. The drawback of SIFT
in this scenario, is that the DoG interest point detector neglects a
considerable amount of information on the animal body valuable for
the determination of fine non-rigid displacements. The two most
salient features are the contour of the animal, and in case of markers
- e.g. a color dot pattern on the animal - their positions. In addition
DoG points are not stable if curvature changes occur. In the case of
a bending animal this results in a shifting of interest point positions.
For the coarse robust rigid registration, the amount is not relevant,
but it would decrease the quality of a non-rigid mapping consider-
ably.

2. Canny edges and gradient histograms: To overcome the
limitation of DoG points, Canny edge points can be used. With this
method, boundary points are chosen as interest points by a canny
detector. For each interest point detected, the orientation is calcu-
lated according to the gradient at its position. To describe the texture
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gradient histograms are then calculated analogously to the SIFT fea-
tures, with a fixed scale. The fixed scale assumption is valid, if we
can assume constant distance between the animal and the camera.

4.2. Group-wise registration

The group-wise registration is based on an approach proposed in
[7]. The interest points in the images serve as landmark candidates.
Initial correspondences on the frames Ii, i = 1, 2, . . . , n for a set of
k landmarks are established by pairwise propagation of the landmark
position in I1 to Ii based on the according homography H1,i and the
search for the closest interest point. This results in correspondences
for k landmarks {l1, . . . , lk}, which are encoded in a k×n matrix G.
Each column represents an image, and the entry Gji ∈ {1, . . . , mi}
with j ∈ {1, . . . , k} is the index of the interest point in image Ii, at
which the landmark lj is positioned.

Each point (i, q) with q ∈ {1, . . . , mi} is assigned its coordi-
nate information p(i, q) and local features f(i, q) (e.g. SIFT, steer-
able filters). By assigning Gji = q the landmark lj in image Ii has
position pij = p(i, q) and feature vector fij = f(i, q). Starting
from these correspondences group-wise registration is performed by
minimizing a criterion function that captures the compactness of the
appearance model comprising the variation of landmark positions
and local texture variation at the landmark positions in the frames of
the sequence. In Fig. 3 initial correspondences in the set of interest
points are depicted for two frames.

The criterion function is based on the minimum description
length principle: the cost function is given as C = CS +CT +α(t)CE

as described in paper [7]. It couples the non-rigid group-wise reg-
istration with the building of a model, that describes the variation
of shape and texture in the examples. Since we can expect, that a
moving animal exhibits a certain amount of systematic deformation
behavior - i.e. points cannot move independently - we can trans-
fer the group-wise registration task to a model building task. In
contrast to purely elasticity constraint registration it allows for the
capturing of systematic and heterogeneous deformation patterns.
The model should capture the shape and texture variation in the
image sequence in the most compact manner [8]. An optimal model
should minimize the cost L of communicating the model M itself
and the data D (i.e. the landmark positions) encoded with the model:
L(D,M) = L(M) + L(D|M), where L(M) is the cost of com-
municating the shape model, L(D|M) is the cost of the shape data
encoded with help if the model, and R is a penalty for the residual
error not captured by the model.

The criterion function consists of the description lengths for the
statistical shape model capturing the deformation of the landmarks
CS , a texture variation model that represents the variation of local
texture for each landmark in the image set CT , and an elasticity term,
that serves as a regularization during the initial phase of the registra-
tion CE .

The criterion is minimized by iteratively selecting a random
frame k, and building a model from the remaining frames. This
model is fitted to the current status of correspondences in frame
k. Based on the fitted model, new landmarks in the sample image
are chosen from the set of interest points, and the positions of the
landmarks in this frame are updated accordingly. The new posi-
tions are encoded in the matrix Gji by changing the corresponding
entries. A schematic overview is given in Fig. 2. This optimiza-
tion results in landmarks, and according positions in each frame.
Since no reference manifold, but only a discrete set of points is
used for the landmark position estimation, the approach can deal
with topolgy changes, and partially missing data. This is relevant

Method (1) (2) (3)

d1 26.0893 6.4577 9.2535
d2 32.4884 10.7660 20.1352
d3 18.5289 7.3800 6.4847
d4 28.8441 6.0174 16.7530
d5 20.7635 7.4360 5.1843
d̄ 25.3428 7.6114 11.5621

Table 1. Registration error (pixels) for three different methods.

since the movement of the animal can render parts invisible in some
frames.

4.3. Deformation fields on the animal body

After the registration has converged a set of landmark positions are
known in all images. They define a deformation field on the body
of the animal. It can be interpolated by thin plate splines, or piece-
wise affine transformation. This yields a dense mapping between the
regions of the animal in individual frames, and can be used for the
integration of signals (e.g. nuclear imaging).

5. EXPERIMENTAL RESULTS

We have performed initial experiments on 5 sequences depicting a
rat in a cage, filmed vertically from atop. Each sequence consists
of fifteen to twenty images.We evaluate the accuracy of the coarse
rigid registration and the fine non-rigid registration. For 8 points,
corresponding positions were annotated manually. To obtain a quan-
titative assessment of the registration accuracy, the positions of these
points were propagated across the entire sequence based on the cor-
respondences resulting from registration.

For the coarse registration we compare three different strategies
of extracting interest points and registering the animal body:

(1) Pair-wise point matching with DoG/SIFT: interest points and
descriptors are obtained by the standard SIFT approach. Landmarks
are chosen randomly from the key-points in the image I1, and are
matche based on the local texture features.

(2) Robust homography estimation and non-rigid registration
based on DoG/SIFT: The key-points are first obtained by SIFT
and a homography is estimated from the set of correspondences by
RANSAC. Lastly, the landmark correspondences are determined by
applying the concatenated homographies and matching to the closest
interest points in each image.

(3) Robust homography estimation using DoG/SIFT correspon-
dences, non-rigid registration based on canny points and gradient
histograms: Analogous to (2) but Canny edge points are used for the
propagation of correspondences after homography estimation.

In each image sequence, we mark 8 reference points manually in
I1 and the corresponding 8 points in I5,I10I15 are calculated auto-
matically. Throughout the experiment, we obtain, for each sequence,
8 × 3 manually selected ground truth points and an equal number
of automatically calculated points and calculate the mean distance
di between the manual points and the calculated points in each se-

quence. Finally, the average of these mean distances d̂ is evaluated.
Tab. 1 shows the quantitative performance of the different coarse reg-
istration methods. The robust homography estimation leads to a sig-
nificantly improved accuracy over method (1). The initial correspon-
dences of method (2) and (3) are in the same range.
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Fig. 4. Non-rigid registration result based on DoG points and
RANSAC initialization. Note that the registration was restricted to
the body, i.e., the head was not registered.

Fig. 5. Non-rigid registration result based on Canny points and
RANSAC initialization. Note that the registration was restricted to
the body, i.e., the head was not registered.

Based on the previous results, the initial approximation of cor-
respondences for the group-wise registration can be appropriately
obtained through the coarse methods (2) or (3). To estimate the re-
sult of group-wise registration, the results of a dense mapping of the
reference frame animal body to the remaining frames is performed.
The mapping is defined by the landmark correspondences resulting
from registration. In Figs. 4 and 5 overlays of the results of non-
rigid registration with the actual frame are depicted for two example
frames. The red shapes are the visualized image in the sequence and
the green shapes are the mapped image from I1. In Fig. 4 the non-
rigid registration was based on method (2), while in Fig. 5 the result
of method (3) is depicted. The comparison indicates that the preci-
sion of the fine registration is restricted to the level of accuracy and
density of the interest point locations. The results show that Canny
points are better suited to serve as landmark candidates of the non-
rigid registration. However, inaccuracies remain, and are subject of
ongoing research.

6. CONCLUSION

This paper proposes a method for the non-rigid registration of video
sequences showing small animals. From a set of frames first a suit-
able sub-sequence is selected, and robust rigid registration based on
interest points and local texture descriptors is performed. This serves
as an initialization for a non-rigid group-wise registration of the an-
imal body. It accounts for systematic deformation behavior of the
animal to improve the registration result. The resulting correspon-
dences establish a deformation field on the body, that allows for the
integration of signals over multiple frames. This is highly relevant
in nuclear imaging modalities, since the short exposure time possi-
ble with a moving animal causes bad signal to noise ratio. We have
compared the suitability of different interest points for the sparse
group-wise registration, and first experiments show that they have a

considerable influence on the result. Future work will concentrate
on the improvement of the non-rigid registration, and the application
to nuclear imaging [9].
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